

provenrecruiting.com

The proven method to technical interviews
While it’s not a sure science, we’ve seen other software engineers succeed by

following this same approach and wanted to share this straightforward, replicable

formula for simplifying and completing complex technical interviews.

Before you begin, know your audience

Think of your interviewer as your customer. As they lay out the initial problem,

imagine that you’re sitting down with a potential client who is seeking your help with

a specific challenge. Your goal is to solve their problem. It’s as simple as that. There

is a tendency to overcomplicate the problem you are asked in an interview, but

framing the conversation in this light can help you keep the right challenge in front of

you.

❖ Keep it simple and efficient

❖ Solve the problem they asked you to solve

Moreover, the more you know about your interviewer(s) in advance, the better you’ll

be able to design to their needs. This means understanding the goals and

motivations of each person on the hiring panel. Glassdoor recommends learning as

much as possible about your interviewers (search they’re LinkedIn, Google them,

https://www.glassdoor.com/blog/how-to-prepare-coding-interview/

provenrecruiting.com

get a feel for what they’re working on) so that you can better tailor your answers to

their specific areas of interest. They are your customers, after all.

5-part formula to ace technical interviews

1. Understand the scope of the problem

Take the first few minutes to talk to your customer and get a better

understanding of the problem, its limits, and its applications (use cases). If

there are multiple people in the room, consider each person as an individual

customer with a different agenda. What do they want to get out of this? How

can you meet their needs?

Google Engineer Anthony Mayes suggests repeating the question (in your

own words!) back to your interviewers to make sure you are on the same

page. Ask questions, listen intently, and pay close attention to details. I

recommend starting with use cases; outline on the white board the use cases

you’ve come up with. Document everything very carefully; you’ll want to refer

back to these tests and use cases down the line. So much of the technical

interview is actually about communication, so don’t forget to turn back around

to your customers and check in with them regularly.

2. Make reasonable assumptions

Before diving into code, develop a set of assumptions. The more you can get

your interviewer(s) to agree with you, the better – their buy-in will help make

your life easier as you design and iterate based on these pre-approved

assumptions. Again, document everything. If you aren’t physically in a room

with a whiteboard, document on a screenshare or notepad.

3. Design a working version

Your design and the assumptions that support it need to be simple but

comprehensive. Though you want to keep things as clear as possible, you’re

not trying to deliver an elementary version of what you’re capable of. Think

simple, elegant, but thorough.

Begin by drawing out the major components, with the assurance to your

customer that you will iterate more targeted versions. The key is to make this

https://anthonydmays.com/blog/2017/01/04/interviewing-at-google-heres-6-things-you-absolutely-need-to-do/

provenrecruiting.com

as easy as possible for you to succeed; don’t over design, balance tradeoffs

to best satisfy the set of requirements, and avoid one-way doors. Don’t back

yourself into a corner.

Once you’ve laid out the key components, start to elaborate your design

strategy and clarify interfaces. Keep your scope tight for this initial version and

plan to iterate in the next steps. Stick with simple data structures for a one-

computer version before moving on.

4. Identify your design’s current limitations

At this point you’ve mapped out your idea, ensured buy-in, and are on your

way to a working solution to the problem. It’s time you identify and share any

limitations, weaknesses, or potential pitfalls with your customer. Don’t shy

away from confronting where your system can fail – it’ll show that you

understand the process and are willing to correct/iterate. Start laying out a list

of things to fix, one by one.

5. Redesign (iterate) to address those limitations

Once your “fix-it” list is complete, start knocking items off as best you can.

Iterate and elaborate. While you should definitely discuss the pros and cons

when making tradeoffs – to clue the customer into your thinking process – it’s

important to be decisive. Every project will have limitations and the customer

knows that. They want to see you reason through a complex challenge before

coming to a final, conclusive decision.

Looking at the process as a simple system will help you successfully complete

the coding challenge – even without knowing what the specific questions will

be in advance. Remember, hiring managers aren’t only searching for technical

experts – they also want professionals who can clearly explain themselves,

follow direction, and work under pressure.

	The proven method to technical interviews
	Before you begin, know your audience
	5-part formula to ace technical interviews
	1. Understand the scope of the problem
	3. Design a working version
	4. Identify your design’s current limitations
	5. Redesign (iterate) to address those limitations

